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A Method for Computing Flow Fields 
around Moving Bodies 

SATORU OGAWA AND TOMIKO ISHIGURO 

A new method for computing flow tields with arbitrarily moving boundaries is proposed. 
Under the concept of Lie derivatives the tield equations in general moving coordinates are 
derived, which consist of several kinds of equations, for example. one written in Viviand’s con- 
servative form. According to our formulation, it is natural and reasonable to consider that the 
computational coordinates fitted to the body move in space, contrary to the usual com- 
putational procedures. The two-dimensional incompressible Navier-Stokes equations in 
general moving coordinates are solved by a finite difference method. The present calculations 
are made for (a) the blood flow in human ventricle, and (b) the dynamic stall process on 
oscillating airfoil. Consequently it is shown that the flows generated by moving bodies can 
easily be analyzed by the present method. 1 1987 Academac hear. Inc 

1. INTRODUCTION 

The recent progresses of numerical analysis and computer performance have 
made it possible to numerically calculate unsteady flow problems by directly solv- 
ing the NavierStokes equations with a large number of grid points within 
reasonable computation time. The flow fields around arbitrarily moving boun- 
daries, however, can scarcely have been analyzed among the phenomena usually 
observed in nature. To analyze such problems, Viviand [l] derived the conser- 
vative forms in the moving coordinates, and Lerat and Sides [2] and Steger [3] 
used the equations to calculate flow around the oscillating airfoil. In process of 
derivation of equations in the moving coordinates from the equations in Cartesian 
coordinates, Viviand used the transformation of variables. Since the procedure of 
derivation is very complicated and is not straightforward, and it is rather difficult to 
grasp the meaning of the equations. 

In this paper we propose a new method for computing flow fields with arbitrarily 
moving boundaries. It is shown that the field equations in general moving coor- 
dinates can be derived under the concept of Lie derivative [4, 51 without labour of 
complexity. They are obtained straightforward if the tensorial character of the 
equation is known. In our formulation the grid fitted to the body moves and is not 
fixed in space, contrary to the usual computation procedures. The main purpose of 
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this article is to examine whether reasonable solutions will be obtained by using the 
present formulation or not, and the two-dimensional incompressible NavierStokes 
equations in the moving general coordinates are solved for two different flows. The 
first is the numerical simulations of the blood flow in human left ventricle by using 
$ -o variables, and the second is the numerical simulation of the dynamic stall 
process of the NACA0012 airfoil by using P-v variables. In each problem it is 
shown that the unsteady flow problems generated by the motion of bodies can 
easily be solved by using our formulation. 

2. GOVERNING EQUATIONS IN MOVING COORDINATES 

In general coordinates fixed in space, it is well known that the equation of con- 
servation law is expressed as follows: 

where ,z ,F’, j’, and 37 are the density distribution of physical quantities in a unit cell 
of the coordinate system, the convective flux density. the conductive flux density, 
and the source density, respectively. These elements of conservation equation are 
the tensor density of weight + 1, and the spatial derivative (7r. must be replaced by 
the covariant derivative V, in index notation. 

The equations of mass and momentum are written as follows: 

?/?/A + V,(pch) = 0, (1) 

ap1+/c’t + v, (/kV - tP ) = PF’, (2) 

where p is the mass density and 8 the stress tensor, and F’ the body force, and the 
notation of summation convention is used. The upper symbol ( m ) denotes the 
quantity multiplied by & = Det( g,,)’ ‘, which is the scalar density of weight + 1, 
and g,, is the metric tensor. 

Now, let us derive the equations in general moving coordinates from Eqs. (1) and 
(2). Let the general moving coordinates x* be denoted by x at time t = t,, namely, 
x * satisfies 

x* = x*(x, t - to), x*(x, 0) =x, 

then it is obvious that the spatial derivatives satisfy V,, = Vi at t = to. On the other 
hand the time derivative d/at in Eqs. (1) and (2) is the evaluation at a fixed point in 
space, and must be rewritten by the evaluation at the same coordinates x*: d/atlx,. 
Such time derivative is named as the Lie derivative [4, 51 (see Appendix, (i)). 
Applying the concept of Lie derivative, the equations in arbitrarily moving coor- 
dinates are straightforward obtained. Since p and bui are the scalar density of 
weight + 1 and the contravariant vector density of weight + 1, respectively, Eqs. ( 1) 
and (2) are rewritten in moving coordinates as follows using Eqs. (A3) and (A5): 
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i7~/at+V,[p(u”- Vk)] =o, (3) 

c?(fh’)/& + v, [@‘( Uk - V”) - lTik] + fill” v, v’ = pr;‘, (4) 

where the subscript * is omitted for simplicity, and V’ is the velocity field of the 
moving coordinates. In the case that the moving velocities of the coordinate system 
coincide with the velocities of fluid (u’= vi), the coordinate system is termed the 
Lagrange coordinates. ln this case, Eqs. (3) and (4) become 

appt = 0. (5) 

fi( &f/c? + uh V, 11’) = V, ~7’~ + /TF’ (6) 

which correspond to the usual expressions in the mechanics of solid [6]. Also, if the 
.x, 1’ 3 z, components of v are used, 

v = c’e, = l?“i ,,, (m=x, ?‘,-‘), 

where i,,, is the rectangular base vector, then Viviand’s conservative forms are easily 
derived from Eqs. (3) and (1) or Eq. (4) as follows [see Appendix, (ii)], 

iy/i)t + ;ik[jqUk - V”)] = 0 (7) 

?($c’t’) (:t + 3, [jjlqc/‘ - v”) - pk] = ,,,, (m =x, y, 2). (8) 

If the tensorial character of the equation is known, then the field equation in 
general moving coordinates can be derived in the same way without labour of com- 
plexity. 

Now, let us derive the incompressible NavierStokes equations in general moving 
coordinates. The equation of mass conservation is 

V,i?=2,~“=0, (9) 

where the first equality is due to 6’ be the contravariant vector density of weight 
+ I. Using the stress tensor of Newtonian fluid [7], 

0)’ = - Pg” + <g” v, uk + p[V’V + Vu’- $g’/ V,v”], (10) 

where P is the pressure, and [ and p are the bulk viscosity and the coefficient of 
viscosity, respectively, the equation of momentum conservation is obtained as 
follows, 

mpt + ( l/&j) i? v k 6’ = g’” v,( - p/p) + v v,( gkm v,, i?‘), (11) 

where \? = ,u/p, and g” is the contravariant metric tensor. In moving coordinate 
system the momentum conservation equation is written as 

atr’/at+(l/&)[(ak- ~k)v~U”i-~;~k~k++kVh~] 

= g’“i v, ( - F/p) + v V,( gkf” v,,, i?), (12) 
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where Eq. (A5) is used since 8’ is the contravariant vector density of weight + I. In 
two-dimensional problems, the $ -o method is known to be efficient in com- 
putation, and is used in several problems [S]. Here, we also derive the equations of 
$ and w in general moving coordinate system. The vortex w, is defined by 01, = 
z,t>r f” v,, 3, and the equation of w, is obtained by operating E,,,, g’lh V,, to Eq. (11) as 

?W,/c’l + ( l/J&S” v, w, + El,,,; g”” V,,fi” v, a’) 

= L’ V,( gh”‘v,,] 0,). (13) 

Note that the permutation symbol Z,,A is the tensor density of weight - 1, and the 
vortex w, is the covariant vector. The expression in moving coordinates is obtained 
by using Eq. (A6) as follows: 

aw,/?ri(l/J&(~h- P)V, w, - Wh v, Ph + E,,,, g”” v, Sk v, 6’) 

= 1’ V,( gh”’ v,,ru,). (14) 

In two-dimensional case, the metric tensor g,, is given by 

and vortex w, has only one component 03, and W, = w2 = 0. Hereafter the index of 
u is omitted for simplicity. The stream function Ic/ is defined as 

then Eq. (9) is satisfied automatically. After simple calculations, the equations of 
t/j - o method in general moving coordinates are obtained as follows: 

au/a1 + (l/&[(a$/rs* - 8’) &3/&Y 

- (al@k’ + P) au/ax*] = VA 0, (16) 

-w=n.lj, (17) 

whereA.=A~,c7,+Ba,t?z+Ca,a,+D,c?,+Dza,,andtheconstantsaredefined 
as follows using the Riemann connection { ,ik }, 

A = g”, B=2g”, Cz g2*, Ds- -(A{,“,}+B{,S2}+C{z”2}) (s=1,2). 

After all the incompressible Navier-Stokes equations in general moving coor- 
dinates are given by Eqs. (9) and ( 12) for P - v variables, and by Eqs. (16) and ( 17) 
for Ic/ - o variables, respectively. 
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3. COMPUTATIONAL SCHEME 

In this paper two-dimensional incompressible flows are solved for two cases: 
(1) the blood flow in human ventricle by using II/--w variables and (2) the 
dynamic stall process on oscillating airfoil by P-v variables. The computational 
schemes in both cases are similar, and for the computations by $ -w variables see 
[8], and for the computations by P - v variables see [9] which is the modifications 
of MAC method [lo]. In both cases, we must solve the Poisson equation and the 
evolution equation. 

The Poisson equation of $ or P is solved by the SLOR method, and the SLOR 
scheme is written for I/I as 

A($ ;+ L,, -w:.,+cc/, l.J)+wtiI+L.~+I+!bI I../ I-$16l.J+I-+I+I.J I) 

+ Cllc,L/, I - (2/5;!)$:.,-2(1- l/Q)$,../+~,,, 11 

+ D,(vJ,+ I../- $1 1.J) + DAti,.J+ , - $,.J 1) = -~‘;o (18) 

where the suffix (+ ), (n), and (Z,J) denote the value of the present iteration, the 
time step, and the grid point, respectively. Q is the relaxation parameter, and we 
take R - 1.4 from the numerical experiments. The constants A, B, C, D r and D, 
are defined by 

A = g”/(du’)“, B = Zg”/(d.u h2), c E g’Z/( Ax’)2, 

D,s= -(g”( ,‘,) +2g”j ,“>I + g2’j,“,})/(2dxs) (s= 1, 2). 

The equation of pressure P is the same with Eq. (18) except that the r.h.s. term is 
written as 

(19) 

where D is the absolute scalar. 
The time integration of the evolution equation of w or v is calculated by SOR 

method or rational Runge-Kutta method [ 111 with the second order accuracy in 
the time direction [see Appendix, (iv)]. All spatial derivatives are approximated by 
central differences except that the convective terms are approximated by the follow- 
ing upwind schemes: 

In case (a), Greenspan scheme [ 123 with first order accuracy 

FC7Gl?.u = F( G, i , -G, -,)/2A.u+ lFI(-G,,, +2G,-G, ,)/2Ax, 

and in case (b), Kawamura scheme [9] with third order accuracy 

F?G/&u=F(-G,,,+8G,+,-8G, ,+G,m2)/12Ax 

+ IFI (G,, z -4G,+, + 6G, - 4G,p, + G, 2)/4dX, 

are used. 

(20) 

(21) 
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4. PROCEDURE OF NUMERICAL SIMULATION 

The procedures of numerical simulation in both cases are similar, and are written 
as follows 

(1) Generate stational grids by using the grid generation technique. 

(2) Generate the grid at each time step by interpolation, and calculate the 
metrics and the velocities. In our simulations, the metrics: e,, g”, and { ,jk}, and the 
grid velocity pi are needed, and are calculated using the following relations 

Natural basis e,; e, = ?z/?u’, 

where z denotes the rectangular coordinates of a grid point, and x’ the general mov- 
ing coordinates of the point. 

Contravariant metric tensor g” is calculated by g”glk = S;, and the metric tensor 
g,, is given by the inner product of e, and e,. 

Riemann connection (Christoffel symbols of second kind) (,lk}; 

(,‘k f = g”‘(dg&u~ + C?g,,,ps - (?glk/dX”)/2, 

or the relation deJc?x’= { ,‘I, 1 e,, is used. 
Gird velocity p; V= V’e, = v”‘i,, (m = x, y), and V‘, V’ are calculated by the 

motion of grid. Solving the above equation we obtain 

V’ = V’el- V’ei, 8’ = _ ye; + V”e.; 

(3) Solve the Poisson’s equation of $ or P by SLOR method. 

(4) Solve the evolution equation of o or 6’ by SOR method or rational 
Runge-Kutta method. 

The procedure of numerical simulation is illustrated as follows: 

START+(l)+ t=t, -(2)+(3) 

I I 
t=t,+At +- (4) 

and the computations were carried out by the computer of FACOM-M380. 

5. NUMERICAL EXAMPLES AND RESULTS 

a. Blood Flow in Human Ventricle 

The first computation example is given for the numerical simulation of blood 
flow in human left ventricle. From two-dimensional contours taken by the 
cineangiography, the stational grids were generated by an algebraic method 
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proposed by Gordon and Hall [ 131, see Appendix, (iii). In this numerical example 
the generation of the computational grids is one of the most difficult problems. As 
we have only obtained the outlines of the left ventricle, we do not know where is 
the fixed point during the motion of one cycle and where a point moves in the next 
figure etc. Therefore by observing the figures of left ventricle, we must determine the 
same point during one cycle, and in such case the algebraic method is convenient. 
The contour of left ventricle is parametrized to be the boundary of unit square 
[0, l] x [0, l] by using the interpolation of spline. Figure 1 shows the relation 
between the physical and the computational planes. The number of figures obtained 
is 32 per one cycle (1 set), and 32 stational grids are generated. Figure 2 shows 8 
stational grids in one cycle. In computing the grid velocities we must know the fixed 
point during the motion of body, and it is assumed that the middle point of apex- 
outlet (see Fig. 1) is tixed in space. 

On the boundary conditions, the body and the computational grid fitted to the 
body move, and the velocity of body surface coincides with the velocity of grid; 
v = V on the surface of body. From Eq. (15) the boundary values of the stream 
function are determined by putting Ic/ = 0 at the end point of a line and by 
integrating Eq. (15), or ( 15), along the boundary lines. The boundary condition of 
tr) are determined by solving Eq. (17). On the outlet or inlet line the velocity of fluid 
is assumed to be constant and is calculated by the time-change of area of the body. 
The values of $ and w  on the lines are determined in similar way to those of boun- 
dary surface, however, in this case the value of outer point is approximated by the 
extrapolation from the values at the neighbouring grid points just inside the outlet 
or inlet line. 

Th computation starts at end diastole and our computational results in third 
cycle are presented in the following. The coefficient of viscosity of blood is assumed 
to be 0.03 poise, and the grid has 51 x 51 points, and the time increment in com- 
putation is chosen to be 0.0004. Figures 3 and 4 show the streamline and the 
velocity vectors during one cycle, respectively. Figure 5 shows the iso-vortex con- 
tours. Though our computation is carried for two-dimensional flow neglecting the 
existence of valves, the characteristic feature of velocities and pressure at the outlet 

aorta 

physical plan.? 

computational plane 

FIG. I. Correspondence between physical plane and computational plane 
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t=5/8 

t=1/8 

t=2/8 

t=6/8 

FIG. 2. Example of stational grids for left ventricle. 
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FIG. 3. Streamlines 
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FIG. 4. Velocity vectors. 
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FIG. 5. Isovortex contours. 
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FIG. 6. Velocity and pressure in diastolic phase. 

or inlet coincide with the experimental ones [ 141 (see Fig. 6). It is clear that two 
large swirls are observed during diastolic phase, and this observation has been con- 
firmed experimentally. 

There are very few data for human heart obtained by in vivo experiments, 
however, if three-dimensional data of the contour of heart is obtained, we will be 
able to compute the inner flow fields by the similar procedures of this paper. 

b. Dynamic Stall on Oscillating Airfoil 

The second computational example is given for the dynamic stall process of 
oscillating airfoil whose numerical simulations are the urgent problems in 
aerodynamics. In this case P - v variables are used, and Eqs. (9) and (12) are 
solved. The numerical experiment is given for NACAO012 airfoil oscillating in pitch 
at the amplitude of 5” about the mean angle of attack of 15” with the-reduced fre- 
quency of 0.471 and the Reynolds number 20000. By the above algebraic method 
stational grids around the airfoil are first generated for three cases of its extreme 
angles of attack and its mean incident angle of attack. Then the grid at the arbitrary 
time step was calculated by the interpolation between two grids. The minimum 
spacing in the direction to the surface of the airfoil is fixed to be 0.0001 of the chord 
length. The grid has 171 x 61 points, and the 91 points are distributed on the airfoil 
surface, see Fig. 7. 

On the boundary conditions, the nonslip condition is required for the viscous 
flow, and v = V is set. The surface pressure is computed by solving the momentum 
equations on the surface of airfoil. For the far-field boundary, the quality of fluid is 
assumed to resemble the potential flow, and the following conditions are imposed: 
The normal component of velocity is zero except for the downstream one, which is 
extrapolated from the value at the neighbouring grid points just inside the boun- 
dary. The tangential component is so determined that the circulation coincides with 
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FIG. 7. Grid of NACAO012 airfoil, r = 15’. 

that of inner grid points. The pressure on the outer boundary is set to be constant 
except for the downstream one, which is extrapolated in similar way to the normal 
component of velocity 

The computation starts at the incident angle of 15” and our computational 
results in the third cycle are presented. Figure 8 shows the unsteady pressure dis- 
tribution, and the suction peak gets higher after the incident angle exceeds the static 
stall one. At about M = 18” the separation bubble is detected around the leading 
edge, and as the vortex converts itself along the upper airfoil surface, small bubbles 
are made up around the leading edge and there are many small pressure bumps on 
the upper surface. This is similar to the result of compressive laminar calculation by 
Ono [ 151. Figure 9 shows the moment, drag and lift coefficients versus time. At 
t = 0, the incident angle is 15’ and varies as 15” + 20’ -+ 15’ + 10’ + 15”. The lift 
coefficient increases even after the incident angle exceeds the extreme angle of 
attack, and its reason, we consider, is that the reduced frequency is large and the 
effects of inertia are dominant in this case. 

In this computation the image of the grid system is observed in the flow structure 
(Fig. 8) and we think the number of grid points on the airfoil surface is still small. 
Furthermore, three-dimensional computation will be needed if we want to capture 
the phenomena of separation clearly. 
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FE. 8. Unsteady pressure distribution. (a) t=0.708, IX = 18.88”, (b) t= 1.195, cc= 19.98”, 
(c) t=2.583, ct= 14.48”, (d) t=3.114, LX= 11.15”, (e) 1=4.280, G(= 11.07”. 
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FIG. 8-Continued. 
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6. CONCLUSION 

It becomes clear that the unsteady flow problems generated by arbitrary motion 
of bodies can be solved by using our formulation. Since we only handle the 
geometric quantities whose characteristics are definite in the tensor analysis, the for- 
mulation is simple and clear, and its extensive application to other flow problems is 
easy. In this paper we only solved the incompressible two-dimensional 
NavierStokes equations. Furthermore, if the topology of the problem does not 
change during the motion, any flow problem such as the compressible three-dimen- 
sional equations can be solved by using our formulation. Now we think, there will 
be left few difficult problems in calculating these flow fields except for the memories 
and the computing speed of computer. Though the performance of computer has 
been advanced, the speed of computation is still slow and it took more than several 
hours for each numerical simulation. 

APPENDIX 

(i) Lie Derivative [4, 51 

At time t = t,, let us consider two coordinate systems: x’, the Euler coordinates 
fixed in space, and xi, the moving coordinates which coincide with xi at time t = to. 
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The relation between two coordinates is 

xi = x’(x*, t - to) and xi = x’* at t= t,. 
Expanding the above equation by t 

x’=x’+Atv’(x*,0)+ . ..) (AlI 

where V’= (ax’/at)lx,. Let e, be the natural basis of Euler coordinates and e* the 
natural basis of moving coordinates, then 

e:‘= (axyax*) e, (A21 

holds. Substituting Eq. (Al ) into Eq. (A2), we obtain the following relation for the 
natural basis 

e* = (hi, + At V, VI) ej, 

and for the covariant basis 

e\ = (S’, - At V, V’) e’. 

Using the above relations we can easily derive the evaluations of several quantities 
at the same coordinate in the following. 

(a) Lie derivative of scalar density of weight W, e. 
Consider the scalar density field D of weight W, which satisfies the following 

relation. For Affrne transformation A i’i: dx’ = A i’i dxj (Fig. A), 

holds, where n = Det(A”i). At (to + At, P), the following relations between the 
Euler coordinates and the moving coordinates hold 

d-x’ = (6; - At V, vi) dx’, A = Det(GI - At Vj Vi) + 1 - At V, Vk, 

FIGURE A 
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and Q+dt@/at*=(l +wdrV,V”)[&+dt(d~/at+ V”V,&)], where a/at*= 
8/8tlx,. Comparing the first order terms of At, the Lie derivative of scalar density of 
weight M’ is derived as 

a&at* = a&at + v” v, Q + WQ v, vk, (A3) 

Note that Jg = [Det(g,,)]“’ 
derivative of & is 

is the scalar density of weight + 1, and the Lie 

a&at* = a&at + &v, Vk, 

where V,& = 0 used. 

(b) Lie derivative of contravariant vector, F’. 
Let F be the contravariant vector field. It is expressed in Euler coordinates at 

(f,, + At, P) as [F’ + Ar(L?F’/dt + Vk V,F’)] ei. In moving coordinates it becomes 
(F’+ At aFi/&*) e,*, and since both vectors are equal, we obtain 

dF’/dt* = aF’/c?t $ Vk V, F’- Fk v, V’. (A4) 

For the contravariant vector density of weight w, we obtain from Eqs. (A3) and 
(A4) 

aF/at* =a&3 + vk v,F-FkVk vi+ WPVk vk. (A5) 

Using the similar procedures the Lie derivative of any tensor can be obtained. 

(c) Lie derivative of covariant vector, Fi 

#,/at* = dF#t + vk V, F, + Fk vi Vk. (‘46) 

(d) Lie derivative of tensor density of weight W, PI,, 

aP’,lat* = aP’,j& + vk vk P’j- ijk, vk v’ + Pik vj vk + wi?livk vk. (A7) 

Note that the above relations hold in any time though we have derived the 
relations at the special time t,. 

(ii) Viuiands Conservation Forms [ 1, 31 

Equation (2) is equivalent to 

a(pyat + v,(p~~k - ek) = p, 

where crkek = crikeiek, and since the Lie derivative of Jv is the same as that of the 
scalar density of weight + 1; 

a(pV)lat = a(pV)/at + vk v,(fiV) + (fiV) vk vk 

= a(pv)/at +vk(pvvk), 
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we obtain 

a(~~)/& + V,[~v(u” - Vk) - a”] = fiF. 

If v is expressed by the rectangular base vector i, 

v=v"i m (m = 4 Y, z), 

then let the base vector i, be out of the derivatives, and using the following relation 
for the contravariant vector density of weight + 1; 

V, fk = akyk, 

Eq. (8) is obtained. The same equation is derived from Eq. (4), by putting the 
natural basis e, in the derivative. 

(iii) Grid Generation [ 133 

The algebraic grid generation procedure proposed by Gordon and Hall is as 
follows: 

In two-dimensional case, let F be the continuous function such that F: &D + aR*, 
where @ is [0, I] x [0, 11, then the univalent function U: CD + R* is constructed 
from U = Ps@ Pt)[F]. The projector Ps@ Pt is defined by 

f’.~OPfCFl = do(s) W, t) + d,(s) F(1, t) + x,,(t) F(J, 0) +x,(s) F(s, 1) 
I I 

- c c d;(s) x,(t) Us,, ti)> 
,=o,=o 

where do, 4,) and x0, x, are four blending functions which satisfy the cardinality 
conditions 

d;tsk) = 6;k, dtk) = 6ik for i, k = 0, 1 

wheres,=t,=Oands,=t,=l. 

(iv) Wamhecq’s Rational Runge-Kutta Method for Solving System of Ordinary 
Differential Equations [ 111. 

Suppose the system of differential equations dw/dt = f(w) is given together with 
the initial values w(tO) = wO, where 

w = (WI ) I&‘* ,..., UaN)T, f(w) = Vi(W)> f2(wL .fdw)lT* 

and w0 = ( u’~, , wo2 ,..., wON)T are elements of RN. An approximation w to the value 
of w at the point t = to + At is obtained as the following: 

w = wo + CWk’ 8) - gk’ . g’)l/(g. g), 



68 OGAWA AND ISHIGURO 

where g’=drf(w,,), g’=dtf(w,+ag’), g=(l -h)g’+hg’, ah< -$, and . sym- 
bolizes an inner product of two vectors. The method gives the second order 
accuracy if ah = - $, and the first order accuracy if ah < - $. 
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